lunes, 28 de marzo de 2011

Hardware y Software

En Breve

  • Software es todo el conjunto intangible de datos y programas de la computadora.
  • Hardware son los dispositivos físicos como la placa base, la CPU o el monitor.
  • La interacción entre el Software y el Hardware hace operativa la máquina, es decir, el Software envía instrucciones al Hardware haciendo posible su funcionamiento.
Más allá de la popular definición hardware es lo que golpeas cuando falla el software, el Hardware son todos los componentes y dispositivos físicos y tangibles que forman una computadora como la CPU o la placa base, mientras que el Software es el equipamiento lógico e intangible como los programas y datos que almacena la computadora.

1.- Hardware

Los componentes y dispositivos del Hardware se dividen en Hardware Básico y Hardware Complementario
  • El Hardware Básico: son las piezas fundamentales e imprescindibles para que la computadora funcione como son: Placa base, monitor, teclado y ratón.
  • El Hardware Complementario: son todos aquellos dispositivos adicionales no esenciales como pueden ser: impresora, escáner, cámara de vídeo digital, webcam, etc.

Placa Base o Placa Madre

Los componentes Hardware más importantes de la computadora y esenciales para su funcionamiento se encuentran en la Placa Base (también conocida como Placa Madre), que es una placa de circuito impreso que aloja a la Unidad Central de Procesamiento (CPU) o microprocesador, Chipset (circuito integrado auxiliar), Memoria RAM, BIOS o Flash-ROM, etc., además de comunicarlos entre sí.

Grupos de Hardware

Según sus funciones, los componentes y dispositivos del hardware se dividen en varios grupos y en el siguiente orden:

Dispositivos de Entrada

Los Dispositivos de Entrada son aquellos a través de los cuales se envían datos externos a la unidad central de procesamiento, como el teclado, ratón, escáner, o micrófono, entre otros.

Chipset (Circuito Integrado Auxiliar)

El Chipset o Circuito Integrado Auxiliar es la médula espinal de la computadora, integrado en la placa base, hace posible que esta funcione como eje del sistema permitiendo el tráfico de información entre el microprocesador (CPU) y el resto de componentes de la placa base, interconectándolos a través de diversos buses que son: el Northbridge (Puente Norte) y el Southbridge (Puente Sur).
El Northbridge o Puente Norte es un circuito integrado que hace de puente de enlace entre el microprocesador y la memoria además de las tarjetas gráficas o de vídeo AGP o PCI-Express, así como las comunicaciones con el Puente Sur.
El Southbridge o Puente Sur (también conocido como Concentrador de Controladores de Entrada/Salida), es un circuito integrado que coordina dentro de la placa base los dispositivos de entrada y salida además de algunas otras funcionalidades de baja velocidad. El Puente Sur se comunica con la CPU a través del Puente Norte.

Unidad Central de Procesamiento (CPU)

La CPU (Central Processing Unit o Unidad Central de Procesamiento) puede estar compuesta por uno o varios microprocesadores de circuitos integrados que se encargan de interpretar y ejecutar instrucciones, y de administrar, coordinar y procesar datos, es en definitiva el cerebro del sistema de la computadora. además, la velocidad de la computadora depende de la velocidad de la CPU o microprocesador que se mide en Mhz (unidad de medida de la velocidad de procesamiento). Se divide en varios registros:

Unidad de Control

La Unidad de Control es la encargada de controlar que las instrucciones se ejecuten, buscándolas en la memoria principal, decodificándolas (interpretándolas) y que después serán ejecutadas en la unidad de proceso.

Unidad Aritmético-Lógica

La Unidad Aritmético-Lógica es la unidad de proceso donde se lleva a cabo la ejecución de las instrucciones con operaciones aritméticas y lógicas.

Unidad de Almacenamiento

La Unidad de Almacenamiento o Memoria guarda todos los datos que son procesados en la computadora y se divide en Memoria Principal y Memoria Secundaria o Auxiliar.

Memoria Principal o Primaria (RAM – ROM)

En la Memoria Principal o Primaria de la computadora se encuentran las memorias RAM, ROM y CACHÉ.
La Memoria RAM (Random Access Memory o Memoria de Acceso Aleatorio) es un circuito integrado o chip que almacena los programas, datos y resultados ejecutados por la computadora y de forma temporal, pues su contenido se pierde cuando esta se apaga. Se llama de acceso aleatorio - o de acceso directo - porque se puede acceder a cualquier posición de memoria sin necesidad de seguir un orden. La Memoria RAM puede ser leída y escrita por lo que su contenido puede ser modificado.
La Memoria ROM (Read Only Memory o Memoria de sólo lectura) viene grabada en chips con una serie de programas por el fabricante de hardware y es sólo de lectura, por lo que no puede ser modificada - al menos no muy rápida o fácilmente - y tampoco se altera por cortes de corriente. En esta memoria se almacenan los valores correspondientes a las rutinas de arranque o inicio del sistema y a su configuración.
La Memoria Caché o RAM Caché es una memoria auxiliar de alta velocidad, que no es más que una copia de acceso rápido de la memoria principal almacenada en los módulos de RAM.

Memoria Secundaria (Disco Duro, Disco Flexibles, etc.)

La Memoria Secundaria (también llamada Periférico de Almacenamiento) está compuesta por todos aquellos dispositivos capaces de almacenar datos en dispositivos que pueden ser internos como el disco duro, o extraíble como los discos flexibles (disquetes), CDs, DVDs, etc.

Dispositivos de Salida

Los Dispositivos de Salida son aquellos que reciben los datos procesados por la computadora y permiten exteriorizarlos a través de periféricos como el monitor, impresora, escáner, plotter, altavoces,etc.
Dispositivos de Entrada/Salida (Periféricos mixtos): Hay dispositivos que son tanto de entrada como de salida como los mencionados periféricos de almacenamiento, CDs, DVDs, así como módems, faxes, USBs, o tarjetas de red.

2.- Software

El Software es el soporte lógico e inmaterial que permite que la computadora pueda desempeñar tareas inteligentes, dirigiendo a los componentes físicos o hardware con instrucciones y datos a través de diferentes tipos de programas.
El Software son los programas de aplicación y los sistemas operativos, que según las funciones que realizan pueden ser clasificados en:

Software de Sistema

Se llama Software de Sistema o Software de Base al conjunto de programas que sirven para interactuar con el sistema, confiriendo control sobre el hardware, además de dar soporte a otros programas.
El Software de Sistema se divide en:

Sistema operativo

El Sistema Operativo es un conjunto de programas que administran los recursos de la computadora y controlan su funcionamiento.
Un Sistema Operativo realiza cinco funciones básicas: Suministro de Interfaz al Usuario, Administración de Recursos, Administración de Archivos, Administración de Tareas y Servicio de Soporte.
1.    Suministro de interfaz al usuario: Permite al usuario comunicarse con la computadora por medio de interfaces que se basan en comandos, interfaces que utilizan menús, e interfaces gráficas de usuario.
2.    Administración de recursos: Administran los recursos del hardware como la CPU, memoria, dispositivos de almacenamiento secundario y periféricos de entrada y de salida.
3.    Administración de archivos: Controla la creación, borrado, copiado y acceso de archivos de datos y de programas.
4.    Administración de tareas: Administra la información sobre los programas y procesos que se están ejecutando en la computadora. Puede cambiar la prioridad entre procesos, concluirlos y comprobar el uso de estos en la CPU, así como terminar programas.
5.    Servicio de soporte: Los Servicios de Soporte de cada sistema operativo dependen de las implementaciones añadidas a este, y pueden consistir en inclusión de utilidades nuevas, actualización de versiones, mejoras de seguridad, controladores de nuevos periféricos, o corrección de errores de software.

Controladores de Dispositivos

Los Controladores de Dispositivos son programas que permiten a otros programa de mayor nivel como un sistema operativo interactuar con un dispositivo de hardware.

Programas Utilitarios

Los Programas Utilitarios realizan diversas funciones para resolver problemas específicos, además de realizar tareas en general y de mantenimiento. Algunos se incluyen en el sistema operativo.

Software de Aplicación

El Software de Aplicación son los programas diseñados para o por los usuarios para facilitar la realización de tareas específicas en la computadora, como pueden ser las aplicaciones ofimáticas (procesador de texto, hoja de cálculo, programa de presentación, sistema de gestión de base de datos...), u otros tipos de software especializados como software médico, software educativo, editores de música, programas de contabilidad, etc.

Software de Programación

El Software de Programación es el conjunto de herramientas que permiten al desarrollador informático escribir programas usando diferentes alternativas y lenguajes de programación.
Este tipo de software incluye principalmente compiladores, intérpretes, ensambladores, enlazadores, depuradores, editores de texto y un entorno de desarrollo integrado que contiene las herramientas anteriores, y normalmente cuenta una avanzada interfaz gráfica de usuario (GUI).

CONTROL  DE LECTURA
1.- Defina en concreto qué es software
2.- Defina en concreto qué es hardware
3.- Cuales son los componentes y dispositivos básicos  del Hardware
4.- Cuales  son todos aquellos dispositivos adicionales  o complementarios del Hardware  
5.- Defina los conceptos de:

ü  Placa Base o Placa Madre

ü  Dispositivos de Entrada

ü  Unidad Central de Procesamiento (CPU)

ü  Unidad de Control

ü  Unidad Aritmético-Lógica

ü  Unidad de Almacenamiento

ü  Memoria Principal o Primaria (RAM – ROM)

ü  Dispositivos de Salida

ü  Sistema operativo. Funciones



viernes, 25 de marzo de 2011

LA ENERGIA. Clases y usos

"LA ENERGIA ES UNA FUERZA QUE SIEMPRE SE TRANSFORMA, NUNCA SE DESVANECE"
Definición de energía y su relación con el trabajo.
Llamamos energía a la capacidad de trabajo que tiene un cuerpo o sistemas de cuerpos. Por ejemplo: La energía no puede ser creada, ni consumida, ni destruida.
Si no que puede ser convertida o transferida.
Cuando un cuerpo se desplaza las fuerzas actuantes realizan un trabajo. Asimismo, cuando un cuerpo se encuentra a cierta altura, potencialmente esta capacitado para desplazarse hasta el plano, en donde, se realizara un trabajo mecánico.
En este caso el sistema físico puede efectuar trabajo. Osea: un sistema físico posee energía cuando tiene capacidad para realizar un trabajo.
Un cuerpo colocado a cierta altura puede realizar trabajo si se deja caer un resorte comprimido. Realizara un trabajo al extenderse, etc
La energía y su historia.
Del fuego al reactor nuclear.
Los científicos que estudian la evolución de la especie humana encontraron herramientas de piedra muy rudimentarias.
El uso de una piedra para golpear otra como si fueran un martillo, o el acto de arrojar una piedra o una lanza para cazar un animal implican la utilización de la energía cinemática, pues, al estar en movimiento, el arma o la herramienta resultan mas efectivas en el trabajo.
Hace unos 30.000 años, el hombre comenzó a dominar el fuego. La posibilidad de encender y mantener el fuego permitió la calefacción, el comienzo de la cocción de los alimentos y marco los inicios de la metalurgia.
El hombre primitivo necesitaba la energía de los alimentos (la energía calórica) la cual debía ser consumida en grandes proporciones ya que la búsqueda de los mismos era dificultosa. Hace 10.000 años, con la aparición de la ganadería y la agricultura, el hombre comenzó a gastar menos energía en la búsqueda de los alimentos y mantuvo fuentes de energía disponibles como son los rebaños y la plantaciones.
Mas tarde, empezaron a usarse animales para la tracción de arados. La utilización de la energía aportada por animales fue extendiéndose al transporte, la molienda de granos o las bombas para impulsar agua.
Los molinos
Otra etapa de aprovechamiento de la energía es el desarrollo de los molinos. Diferentes civilizaciones comenzaron a utilizarlos: primero, movido por corrientes o caídas de agua y, luego, impulsados por el viento.
La energía cinética del aire también se utilizo en la navegación para reemplazar a los remeros que impulsaban los barcos. Mediante las velas, los barcos convertían la energía cinética del aire en energía cinética de la nave.
Las maquinas de vapor
En el siglo XVII se produjo el desarrollo de las maquinas a vapor.
Desde comienzos del siglo XVII, se utilizaba como combustible el carbón mineral. Las minas de las que extraía el carbón se inundaban frecuentemente y el agua era extraída mediante bombas accionadas por caballos.
En 1712, se utilizo por primera vez una bomba impulsada por un motor de vapor, diseñado por Thomas Newcomen.
James Watt en 1769 le realizo modificaciones y logro un motor rendimiento. La máquina de Watt se utilizo hasta 1784 para desagotar minas.
A medida que las maquinas de vapor eran más seguras y eficientes, comenzaron a ser usadas para el transporte.
Robert Fulton realizo pruebas con un pequeño barco impulsado por una maquina de vapor e instalo, en los EE.UU. la primera línea de barcos de este tipo. En 1823, comenzó a circular en Inglaterra el primer ferrocarril con una locomotora de vapor.
Los motores de combustión interna.
El desarrollo de los motores que utilizan la energía interna del petróleo tuvo varias etapas. El primer antecedente corresponde a dos ingenieros italianos, que hicieron funcionar un motor alimentado con gas alumbrado. Nicolás Otto desarrollo en Alemania el primer modelo de motor, que permitió la fabricación de automóviles en forma industrial.
Los motores livianos permitieron los primeros ensayos de navegación aérea. Así fue como los globos aerostaticos se convirtieron en dirigibles. En 1903, se realizo el primer vuelo en un avión impulsado por un motor. El desarrollo y la difusión del uso de los motores de combustión interna comenzó a generar una gran dependencia energética respecto del petróleo.
Los motores eléctricos.
En 1799, se invento la pila. A partir de este hecho que transformaba la energía química en energía eléctrica se produce el avance en energía eléctrica.
En 1840, se crearon los primeros motores eléctricos, osea, sistemas que transformaban energía eléctrica en cinética (como por ejemplo los juguetes alimentados por pilas). Luego se desarrollaron los motores de corrientes alterna que hoy utilizan los artefactos domésticos. En 1880 comenzó a expandirse la iluminación eléctrica, gracias a la invención de la lamparilla ( que transforma energía eléctrica en luminosa).
La energía nuclear: Los reactores
En 1942, se puso en funcionamiento el primer reactor nuclear, en EE.UU. a partir de este hecho, se abrieron dos vías para la utilización de la energía nuclear: una bélica y otra de aplicaciones a la producción de energía eléctrica.
Energía eólica
Es la energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela. En ella, la fuerza del viento se utiliza para impulsar un barco. Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.).
Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad. Efectivamente, el viento cambia de intensidad y de dirección de manera impredecible, por lo que había que utilizar los remos en los periodos de calma o cuando no soplaba en la dirección deseada. Hoy, cuando se utilizan molinos para generar electricidad, se usan los acumuladores para producir electricidad durante un tiempo cuando el viento no sopla.
Otra característica de la energía producida por el viento es su infinita disponibilidad en función lineal a la superficie expuesta a su incidencia. En los barcos, a mayor superficie bélica mayor velocidad. En los parques eólicos, cuantos más molinos haya, más potencia en bornes de la central. En los veleros, el aumento de superficie bélica tiene limitaciones mecánicas (se rompe el mástil o vuelca el barco).
En los parques eólicos las únicas limitaciones al aumento del número de molinos son las urbanísticas.
VENTAJAS DE LA ENERGÍA EÓLICA
·         Es una fuente de energía segura y renovable.
·         No produce emisiones a la atmósfera ni genera residuos, salvo los de la fabricación de los equipos y el aceite de los engranajes.
·         Se trata de instalaciones móviles, cuya desmantelación permite recuperar totalmente la zona.
·         Rápido tiempo de construcción (inferior a 6 meses).
·         Beneficio económico para los municipios afectados (canon anual por ocupación del suelo). Recurso autóctono.
·         Su instalación es compatible con otros muchos usos del suelo.
·         Se crean puestos de trabajo
DESVENTAJAS DE LA ENERGÍA EÓLICA
·         Impacto visual: su instalación genera una alta modificación del paisaje.
·         Impacto sobre la avifauna: principalmente por el choque de las aves contra las palas, efectos desconocidos sobre modificación de los comportamientos habituales de migración y anidación.
·         Impacto sonoro: el roce de las palas con el aire produce un ruido constante, la casa más cercana deberá estar al menos a 200 m. (43dB(A))
·         Posibilidad de zona arqueológicamente interesante.

El uso tradicional de los molinos de viento para moler trigo ha sido ha sido sustituido recientemente por el de generar electricidad. En Europa y EUA se han construido varias centrales eólicas de gran tamaño, principalmente en lugares ventosos de la costa. Los diseños modernos son básicamente de dos tipos: turbinas de ejes horizontales que parecen hélices gigantescas de aviones; y turbinas de ejes verticales, que tienen la ventaja de que no necesitan estar orientadas hacia el viento.
Es la energía radiante producida en el Sol como resultado de reacciones nucleares. Llega a la Tierra en forma de radiación a través del espacio en cuantos de energía llamados fotones, que interactúan con la atmósfera y la superficie terrestres.
La energía solar es generada por la llamada fusión nuclear que es la fuente de todas las estrellas del universo. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar, y su valor medio es 1,37 × 106 erg/s/cm2, o unas 2 cal/min/cm2. Sin embargo, esta cantidad no es constante, ya que parece ser que varía un 0,2% en un periodo de 30 años.
La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera.
La intensidad de energía solar disponible en un punto determinado de la Tierra depende, de forma complicada pero predecible, del día del año, de la hora y de la latitud.
Además, la cantidad de energía solar que puede recogerse depende de la orientación del dispositivo receptor.
El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua. Y en el segundo caso la energía luminosa del sol es transportada por sus fotones de luz, incide sobre la superficie de un material semiconductor, ejemplo: el silicio que forma las células fotovoltaicas, fabricadas para que mediante de estas los colectores solares capten la energía y puedan almacenarla en los acumuladores, produciendo el movimiento de ciertos electrones que componen la estructura atómica de la materia.
Un movimiento de electrones produce una corriente eléctrica que se utiliza como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.
Estas centrales de energía solar están en todo el mundo. En latitudes de 60º, cada metro cuadrado de un colector solar recibe unos mil kilovatios / hora de energía solar en un año y puede usar aproximadamente la mitad de esa energía para calentar agua. En latitudes de 35º, un colector parecido recibe el doble.
Energía fotovoltaica
Los sistemas de energía fotovoltaica permiten la transformación de la luz solar en energía eléctrica, es decir, la conversión de una partícula luminosa con energía (fotón) en una energía electromotriz (voltaica).
El elemento principal de un sistema de energía fotovoltaica es la célula fotoeléctrica, un dispositivo construido de silicio (extraído de la arena común).
Los paneles solares están constituidos por cientos de estas células, que conexionados adecuadamente suministran voltajes suficientes para, por ejemplo, la recarga de unas baterías. Tienen utilidad en múltiples campos, desde el ámbito doméstico, hasta los satélites artificiales.
Cuando la energía luminosa incide en la célula fotoeléctrica, existe un desprendimiento de electrones de los átomos que comienzan a circular libremente en el material. Si medimos el voltaje existente entre los dos extremos del material (positivo y negativo) observaremos que existe una diferencia de potencial entre 0,5 y 0,6 voltios.
Si le aplicamos una carga eléctrica, veremos que es posible obtener una corriente de 28 miliamperios por cada centímetro cuadrado iluminado. Hemos convertido el dispositivo en una especie de batería eléctrica, que permanecerá aportando energía indefinidamente en tanto reciba iluminación.
Pero esta pequeña cantidad de energía es insuficiente e inútil, si no somos capaces de obtener mayores voltajes y corrientes que permitan aplicaciones prácticas. Para ello se diseñan en cada oblea cientos de diodos, los cuales, interconectados en serie y paralelo son capaces de suministrar tensiones de varios voltios, así como corrientes del orden de amperios.
Este sistema básico de generación de energía por medio de la luz solar, puede obtener un rendimiento mayor si se disponen dispositivos de control adecuados. Posteriormente, la energía obtenida debe ser almacenada para que pueda ser utilizada por la noche, en que la ausencia de luz no permite su obtención directa. Los paneles solares pueden acoplarse  en forma modular, ello permite que puedan pasar de un sistema doméstico de generación de energía, a otro más potente para industrias o instalaciones de gran consumo.
Los inconvenientes de este sistema de generación de energía, no es tanto el origen de esa energía, el Sol, que excede nuestras necesidades, ni tampoco la materia prima de donde se extrae el silicio, consistente en arena común muy abundante en nuestras playas; se trata de la técnica de construcción de las obleas, excesivamente compleja y cara. Un segundo motivo, es el rendimiento obtenido y el espacio de terreno ocupado por los elementos captadores.
Como contrapunto a sus inconvenientes, es un sistema ideal para instalar en lugares remotos donde no sea posible tender cableados eléctricos o disponer de personal de mantenimiento, tales como teléfonos de emergencia en determinadas zonas (autopistas, alta montaña, etc.), faros marinos en costas poco accesibles, boyas en bajos marinos peligrosos para la navegación que sea preciso señalar, equipos de salvamento a bordo de buques, etc.
ENERGIA BIOVEGETAL
Un producto Biovegetal es la madera, y la energía desprendida en su combustión ha sido utilizada por el hombre desde hace siglos para calentarse y para cocinar sus alimentos. Pero actualmente existen otros productos en grandes cantidades, los desechos, de los cuáles, como resultado de su combustión, se obtendría una cantidad no poco importante de energía.
Se ha calculado que del 5 al 10% de la energía consumida en Estados unidos en 1970 podría ser obtenida quemando todos los desechos, que de esta forma se eliminarían sin tener que amortizarlos en grandes basureros.
Pero no es la combustión el único método de aprovechar los desechos. Los excrementos humanos o animales pueden desprender un gas inflamable, el metano, cuando se los somete a un proceso llamado fermentación.
La fermentación anaerobia de la materia orgánica consiste en su descomposición en ausencia de oxígeno.
Los residuos que resultan después de haberse desprendido el metano dan mejor resultado como abono agrícola que antes, pues parte del nitrógeno que hubiera perdido en forma de amoníaco se encuentra ahora en forma estable y las plantas lo asimilan mejor. El metano es un buen combustible y no es tóxico, ni peligroso, y su obtención por este procedimiento resulta muy rentable.
La energía cinética es energía que un objeto posee debido a su movimiento. Cuando un cuerpo está en movimiento posee energía cinética ya que al chocar contra otro puede moverlo y, por lo tanto, producir un trabajo.
Para que un cuerpo adquiera energía cinética o de movimiento, es decir, para ponerlo en movimiento, es necesario aplicarle una fuerza. Cuanto mayor sea el tiempo que esté actuando dicha fuerza, mayor será la velocidad del cuerpo y, por lo tanto, su energía cinética será también mayor.
Cuando un objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto.
La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial.
Si se deja caer el objeto, la energía potencial se convierte en energía cinética. Otro factor que influye en la energía cinética es la masa del cuerpo.
Por ejemplo, si una bolita de vidrio de 5 gramos de masa avanza hacia nosotros a una velocidad de 2 Km. / h no se hará ningún esfuerzo por esquivarla. Sin embargo, si con esa misma velocidad avanza hacia nosotros un camión, no se podrá evitar la colisión.
La fórmula que representa  la Energía Cinética es la siguiente:
E c   =   1 / 2 ·  m  ·  v 2                E c  = Energía cinética
m  =  masa
v  =  velocidad
Cuando un cuerpo de masa  m  se mueve con una velocidad  v  posee una energía cinética que está dada por la fórmula escrita más arriba.
En esta ecuación, debe haber concordancia entre las unidades empleadas. Todas ellas deben pertenecer al mismo sistema. En el Sistema Internacional (SI), la masa  m se mide en  kilogramo (Kg.) y  la velocidad  v en  metros partido por segundo ( m / s), con lo cual la energía cinética resulta medida en Joule ( J ).
ENERGIAS MARINAS
Cuando algo se mueve, está realizando un trabajo, y para realizar un trabajo es necesaria una energía. Si hay algo que esté en continuo movimiento, ese algo es el mar. Observando desde lejos puede parecer muy tranquilo, pero cuando nos acercamos a él comprobamos que su superficie se mueve continuamente mediante ondulaciones que pueden ser muy suaves o pueden
convertirse en grandes olas que rompen estruendosamente al chocar contra los acantilados. Los cuerpos que flotan son arrastrados de aquí para allá por corrientes marinas. El nivel del mar tampoco está quieto, sino que sube y baja dos veces al cabo del día, constituyendo así el fenómeno de las mareas, que en ciertas zonas son tan acusadas que pueden cubrir y descubrir en pocas horas grandes extensiones de terreno.
Así, todo este movimiento es reflejo de la energía almacenada en el agua, y en ciertos lugares donde el movimiento es mucho mayor, lógicamente, el contenido en energía también será muy grande y tal vez se pueda aprovechar utilizando dispositivos o aparatos ingeniosos y eficaces.
Los movimientos más importantes del mar podemos clasificarlos en tres grupos: corrientes marinas, ondas y olas y mareas.
Lan ondas y olas y las corrientes marinas tienen origen en la energía solar, mientras que las mareas son producidas por las atracciones del Sol y de la Luna.
Formas de sacar energía del mar:
*MEDIANTE LAS CORRIENTES MARINAS
*MEDIANTE LAS OLAS Y ONDAS
*MEDIANTE LAS MAREAS
*MEDIANTE LA ENERGIA TERMICA DEL MAR
ENERGIA ELECTRICA
La energía eléctrica no se puede utilizar directamente a partir de su manifestación espontánea en la Naturaleza. En la actualidad los medios usuales de producirla son:
a) Centrales Hidroeléctricas;
b) Centrales Térmicas;
c) Centrales Nucleares.
Las primeras utilizan la energía que se genera en los desniveles o saltos de agua; en general se suelen obtener buenos rendimientos y precios bastante bajos en la energía eléctrica así producida. En España, el carácter muy accidentado de la orografía ha propiciado la obtención de electricidad a partir de este tipo de centrales eléctricas. Así, durante 1978 el 42% de toda la energía eléctrica producida en nuestro país fue de origen hidráulico.
No obstante, dos de las condiciones exigidas para la instalación de centrales hidroeléctricas - orografía accidentada y lluvias regulares – constituyen insuperables dificultades allí donde no se dan. Por ejemplo, años de escasez de lluvias se traducen en drásticas bajas en la producción de energía.
Los otros tipos de centrales eléctricas (térmicas y nucleares) basan su funcionamiento en el carbón o petróleo (térmicas) ó en el uranio (nuclear).
Cómo es lógico, la rentabilidad de unas y otras depende, en cada caso, tanto del precio de construcción de la central como de la los precios corrientes de los combustibles de los que se valen.
Uno de los inconvenientes que suelen achacarse a este tipo de centrales es la contaminación ambiental que pueden ocasionar.
Tanto las centrales térmicas de carbón y fuel-oil como la mayoría de la nucleares, realizan una refrigeración de agua, y en todos los casos se eliminan cantidades de vapor de agua por las chimeneas. Este vapor de agua hace aumentar la temperatura y la humedad de los lugares cercanos, por lo que se pueden operar cambios climáticos perjudiciales en algunos casos.
Además, en las centrales nucleares pueden darse otros problemas, tanto por los riesgos que comporta la manipulación del Uranio ( extracción de la minas y enriquecimiento ), como por los posibles fallos es los sistemas de refrigeración, seguridad o de control, así como por la dificultad de un eficaz almacenamiento y posterior eliminación de residuos radiactivos.
Transformarse produciendo trabajo.
Energía combinada
Es parte de la energía total de un cuerpo, que no puede transformarse produciendo trabajo: es pues, la diferencia entre la energía total y la energía libre de un cuerpo o sistema.
Un volcán en erupción es un espectáculo dantesco en el que las explosiones estremecedoras, el fuego y el desbordamiento de piedras fundidas en forma de lava han asombrado siempre al hombre, que lo ha interpretado como una fuerza desatada de la Naturaleza. Pero también puede interpretarse como una manifestación de la energía almacenada en el seno de la tierra que emerge a la superficie, liberándose.
Las manifestaciones de esta energía no sólo son los volcanes, sino también los arroyos calientes, los géiseres o las fumarolas, que no son tan peligrosos como los volcanes y, por tanto con mayores garantías de seguridad.
La energía geotérmica tiene, posiblemente, su origen en la descomposición de los isótopos radiactivos presentes en las zonas internas de la Tierra, que al desintegrarse liberan gran cantidad de energía. Esta liberación energética es la que provoca la fusión de las rocas, calentamiento de aguas, etc.
Como siempre, el aprovechamiento de esta energía consiste en la obtención de un vapor a la suficiente presión como para conseguir producir corriente eléctrica por medio de un alternador. Con esta base, común a toda explotación energética, los problemas específicos que se plantean son de problema técnico.
Ahora bien, no en todos los lugares del mundo emergen espontáneamente manantiales de agua caliente o vapor, pero hay una forma de obtenerlos.
Cuando se perfora la corteza terrestre, aumenta la temperatura a medida que se profundiza; así, haciendo perforaciones profundas en el suelo, barrenando las rocas del fondo é inyectando agua por el orificio practicado, ésta se transformaría en vapor, que se recuperaría por otro conducto y luego se usaría para producir electricidad.
Pero todavía existen problemas de difícil solución, como es la corrosión sufrida por los materiales utilizados para el sondeo, ya que el vapor de agua obtenido arrastra sales de las profundidades de la Tierra.
Estas plantas resultan más económicas que las de carbón o nucleares, lo que hace que se sigan desarrollando y se confíe en ellas como recurso energético.
En algunos lugares se dan otras condiciones especiales como son capas rocosas porosas y capas rocosas impermeables que atrapan agua y vapor de agua a altas temperaturas y presión y que impiden que éstos salgan a la superficie. Si se combinan estas condiciones se produce un yacimiento geotérmico.
La energía geotérmica tiene varias ventajas: el flujo de producción de energía es constante a lo largo del año ya que no depende de variaciones estacionales como lluvias, caudales de ríos, etc. Es un complemento ideal para las plantas hidroeléctricas.
El vapor producido por líquidos calientes naturales en sistemas geotérmicos es una alternativa al que se obtiene en plantas de energía por quemado de materia fósil, por fisión nuclear o por otros medios.
Las perforaciones modernas en los sistemas geotérmicos alcanzan reservas de agua y de vapor, calentados por magma mucho más profundo.
La energía térmica puede obtenerse también a partir de géiseres y de grietas.
En algunas zonas de la Tierra, las rocas del subsuelo se encuentran a temperaturas elevadas. La energía almacenada en estas rocas se conoce como energía geotérmica. Para poder extraer esta energía es necesaria la presencia de yacimientos de agua cerca de estas zonas calientes.
Podemos encontrar básicamente tres tipos de campos geotérmicos dependiendo de la temperatura a la que sale el agua:
·         La energía geotérmica de alta temperatura
·         La energía geotérmica de temperaturas medias
·         Campo geotérmico de baja temperatura
    La energía geotérmica de alta temperatura existe en las zonas activas de la corteza. Su temperatura está comprendida entre 150 y 400ºC, se produce vapor en la superficie que enviando a las turbinas, genera electricidad. La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150ºC.
Por consiguiente, la conversión vapor-electricidad se realiza a un menor rendimiento, y debe utilizarse como intermediario un fluido volátil. La energía geotérmica de baja temperatura es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 60 a 80ºC. La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 60ºC. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas.
La geotermia es una fuente de energía renovable.
Los usos directos de las aguas geotérmicas van en un rango de 10 a 130ºC y son utilizadas directamente de la tierra:
·         Para uso sanitario.
·         Balnearios.
·         Para cultivos en invernaderos durante el periodo de nevadas.
·         Para reducir el tiempo de crecimiento de pescados, crustáceos, etc.
·         Para varios usos industriales como la pasteurización de la leche.
·         Para la implantación de calefacción en distritos enteros y viviendas individuales.
La energía geotérmica es una alternativa ante el agotamiento de los recursos convencionales y un aporte importante para solucionar los problemas de energía, abriendo una posibilidad de un futuro mejor para todos.
ENERGIA CALORIFICA o TERMICA
La energía térmica es la forma de energía que interviene en los fenómenos caloríficos. Cuando dos cuerpos a diferentes temperaturas se ponen en contacto, el caliente comunica energía al frío; el tipo de energía que se cede de un cuerpo a otro como consecuencia de una diferencia de temperaturas es precisamente la energía térmica.
Según el enfoque característico de la teoría cinético-molecular, la energía térmica de un cuerpo es la energía resultante de sumar todas las energías mecánicas asociadas a los movimientos de las diferentes partículas que lo componen. La cantidad de energía térmica que un cuerpo pierde o gana en contacto con otro a diferente temperatura recibe el nombre de calor. El calor constituye, por tanto, una medida de la energía térmica puesta en juego en los fenómenos caloríficos.
En el caso de los fenómenos caloríficos la transferencia de energía térmica se produce del cuerpo de mayor temperatura al de menor temperatura. La temperatura puede ser asimilada por tanto al nivel de energía térmica, y el calor puede ser comparado con la cantidad de agua que un recipiente cede al otro al comunicarlos entre sí.
El cuerpo de mayor temperatura poseerá moléculas con mayor energía cinética que podrán ceder a las del cuerpo de menor temperatura, del mismo modo que una bola rápida que choca con una lenta la acelera; este tránsito de energía mecánica microscópica, cuyo efecto conjunto es el calor, se mantendrá en tanto aquéllas no se igualen.
Energía magnética
Es la energía que desarrollan la tierra y los imanes naturales. La energía magnética terrestre es la consecuencia de las corrientes eléctricas telúricas producidas en la tierra como resultado de la diferente actividad calorífica solar sobre la superficie terrestre, y deja sentir su acción en el espacio que rodea la tierra con intensidad variable en cada punto, dada por las leyes de coulomb:
f = k M . M
Siendo f = fuerza magnética; k = constante de coulomb;
M y M = masas magnéticas situadas en dicho espacio o campo magnético.
La energía magnética terrestre y la de los imanes naturales o artificiales se manifiesta con máxima intensidad como concentrada en dos puntos determinados de la tierra y de los imanes, denominados polos magnéticos, que distinguimos con los apelativos de polo norte y polo sur. La fuerza de atracción que se observa entre los polos de nombre contrario de dos imanes o de repulsión entre polos del mismo nombre es la manifestación más patente de la energía magnética.
Energia electroestatica
Es la energía potencial que se manifiesta entre dos cargas eléctricas c y c; si las distancias entre ellas es d, y la constante dieléctrica del medio que las separa es k, la energía potencial del sistema tiene por expresión: Potencial =
K c. c´
Si se trata de un condensador, este potencial es
W = CV² :2, en la que C es la capacidad del sistema y V el voltaje o diferencia del potencial eléctrico de las armaduras.
ENERGIA QUIMICA
La energía química es una manifestación más de la energía. En concreto, es uno de los aspectos de la energía interna de un cuerpo y, aunque se encuentra siempre en la materia, sólo se nos muestra cuando se produce una alteración íntima de ésta.
En la actualidad, la energía química es la que mueve los automóviles, los buques y los aviones y, en general, millones de máquinas. Tanto la combustión del carbón, de la leña o del petróleo en las máquinas de vapor como la de los derivados del petróleo en el estrecho y reducido espacio de los cilindros de un motor de explosión, constituyen reacciones químicas.
El carbón y la gasolina gasificada se combinan con el oxígeno del aire, reaccionan con él y se transforman suave y lentamente, en el caso del carbón, o instantánea y rápidamente, en el caso de la gasolina dentro de los cilindros
de los motores. Las mezclas gaseosas inflamadas se dilatan considerable y rápidamente y en un instante comunican a los pistones del motor su energía de traslación, su fuerza viva o de movimiento.
Finalmente, hay que mencionar la más reciente y espectacular aplicación de la energía química para lograr lo que durante muchos siglos constituyó su sueño: el viaje de ida y vuelta al espacio exterior y a la Luna, así como la colocación de distintos tipos de satélites artificiales en determinadas órbitas.
La humanidad ha utilizado desde su existencia reacciones químicas para producir energía. Desde las más rudimentarias, de combustión de madera o carbón, hasta las más sofisticadas, que tienen lugar en los motores de los modernos aviones o naves espaciales.
Las reacciones químicas, pues, van acompañadas de un desprendimiento, o en otros casos de una absorción, de energía.
ENERGIA DE ACTIVACION
Es la energía mínima que deben poseer las entidades químicas para poder producir una reacción química. Se presentan en escalas muy pequeñas.
Energía de reacción.
En una reacción química el contenido energético de los productos es, en general, diferente del correspondiente a los reactivos. Este defecto o exceso de energía es el que se pone en juego en la reacción.
La energía desprendida o absorbida puede ser en forma de energía luminosa, eléctrica, mecánica, etc.. pero habitualmente se manifiesta en forma de calor. El calor intercambiado en una reacción química se llama calor de reacción y tiene un valor característico para cada reacción. Las reacciones pueden entonces clasificarse en exotérmicas o endotérmicas, según que haya desprendimiento o absorción de calor.
ENERGIA NUCLEAR
Una de las fuentes de energía más modernas y que sin lugar a dudas ha levantado más polémica, es sin duda la energía nuclear. La energía nuclear, tiene sus puntos positivos y negativos, pero ya lo veremos más adelante.
En la utilización de la energía nuclear, los neutrones desempeñan un papel fundamental. La mayoría de los elementos no son "puros", sino mezclas de átomos llamados isótopos. Los isótopos de un elemento presentan un nº de neutrones distinto del que posee el átomo común. Sólo su peso los diferencia de este.
Otto Hanh descubrió en Berlín que los átomos de Uranio se dividen cuando se los bombardea con neutrones. Él denominó este hecho como Fisión.
Fréderic Joliot-Curie, demostró posteriormente que en este proceso de fisión quedan liberados neutrones del núcleo atómico; estos se mueven en todas direcciones y algunos chocan con otros núcleos, que se desintegran a su vez y vuelven a liberar neutrones.
Este proceso recibe el nombre de reacción en cadena, y es la base de la obtención de la llamada energía nuclear.
Se puede obtener energía nuclear de dos formas diferentes, mediante FUSIÓN, y mediante FISIÓN. La primera está en investigación, y se obtiene en laboratorios, ya que se emplea más energía en la obtención que la obtenida mediante este proceso, y por ello, todavía no es viable. La fisión es la que se emplea actualmente en las centrales nucleares.
La primera aplicación práctica fue la bomba atómica, en la cual se liberó una energía de 12 kilotones (energía equivalente a 12.000 toneladas de explosivo TNT), destruyendo una ciudad entera. Esta es una forma de liberación de energía de forma incontrolada. En las centrales nucleares, el proceso está controlado, de forma que la energía no sea gigantesca, ya que destruiría el reactor, y se transformaría en una bomba atómica.
Ventajas de la Energía Nuclear:
La energía nuclear, genera un tercio de la energía eléctrica que se produce en la Unión Europea, evitando así, la emisión de 700 millones de toneladas de CO2 por año a la atmósfera. A escala mundial, en 1.996, se evitó la emisión de 2,33 billones de toneladas de CO2 a la atmósfera, gracias a la energía nuclear.
Por otra parte, también se evitan otras emisiones de elementos contaminantes que se generan en el uso de combustibles fósiles.
Los vertidos de las centrales nucleares al exterior, se pueden clasificar como mínimos, y proceden, en forma gaseosa  de la chimenea de la central, pero se expulsan grandes cantidades de aire, y poca de radiactividad; y en forma líquida, a través del canal de descarga.
Por su bajo poder contaminante, las centrales nucleares, frenan la lluvia ácida, y la acumulación de residuos tóxicos en el medio ambiente.
Además, se reducen el consumo de las reservas de combustibles fósiles, generando con muy poca cantidad de combustible (Uranio) muchísima mayor energía, evitando así gastos en transportes, residuos, etc.
CENTRALES NUCLEARES
En las centrales nucleares, el proceso que se controla es el final, ya que en ellas, se genera energía de forma lenta, pues de lo contrario el reactor se convertiría en una bomba atómica, debido a que la mayor parte de la energía se libera al final, como hemos expuesto anteriormente.
En el proceso, se desprende energía en forma de calor. Este calor, calienta unas tuberías de agua, y esta se convierte en vapor, que pasa por unas turbinas, haciéndolas girar. Estas a su vez, giran un generador eléctrico de una determinada potencia, generando así electricidad, al igual que con una dínamo de bicicleta, solo que estas turbinas y el generador, son muy grandes.
Lógicamente, no se aprovecha toda la energía obtenida en la fisión, y se pierde parte de ella en calor, resistencia de los conductores, vaporización del agua, etc. Los neutrones son controlados para que no explote el reactor mediante unas barras de control.
El reactor se refrigera, para que no se caliente demasiado, y funda las protecciones, convirtiéndose en una bomba atómica, incluso cuando este esté parado, ya que la radiación hace que el reactor permanezca caliente.
 En el siguiente esquema, se muestra cómo trabaja una central nuclear, según lo explicado anteriormente: